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Motivation - Efficient Solvers & Discretization

Faster machines and computational algorithms 
can dramatically reduce simulation time. 

High order based discretizations can be 
used to obtain accurate, efficient simulations. 



Model - Steady Advection Diffusion

Inertial and viscous forces occur on 
disparate scales causing sharp flow 
features which:

• require fine numerical grid resolution 
• cause poorly conditioned systems. 

These properties make solving the 
discrete systems computationally 
expensive.

−ε∇2u + ("w ·∇)u = f



Methods - Spectral Element Discretization

A spectral element discretization 
provides:

•accurate element based 
discretization 
•large volume to surface ratio

F (!w)u = Mf

F̃ = M̂ ⊗ F̂ (wx) + F̂ (wy) ⊗ M̂

For bi-constant winds, we can use:

• fast diagonalization  
• minimal memory



Methods -Tensor Products

⊗What does mean?

Suppose Ak×l and Bm×n

then the Kronecker Tensor Product

Matrices of this form have 
some great properties that 
make computations very 
efficient and save lots of 
memory!

Ckm×ln = A ⊗ B =
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Methods - Fast Diagonalization

Matrix-vector multiplies can be  recast as (A ⊗ B)!u = BUA
T

which can be done in O(n3) operations instead of O(n4) (even better savings in 3D)

Best of all though is the Fast Diagonalization Property

C = A ⊗ B + B ⊗ A

C
−1 = (V ⊗ V )(I ⊗ Λ + Λ ⊗ I)−1(V T

⊗ V
T )

Under certain conditions on A & B we can diagonalize C easily

C = (V ⊗ V )(I ⊗ Λ + Λ ⊗ I)(V T
⊗ V

T )

V T AV = Λ, V T BV = I

Only need an inverse of a diagonal matrix!



The discrete system of equations is solved 
iteratively using Flexible GMRES.

We construct a preconditioner based on:

• Bi-constant wind approximations
• Fast Diagonalization
• Domain Decomposition

Methods - Solver & Preconditioner
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Solver Results - Bi-constant Wind

Solution and contour plots of a steady advection-diffusion flow with bi-constant wind using 
Domain Decomposition & Fast Diagonalization as an exact solver. Interface solve takes 
150 steps to obtain 10^-5 accuracy.
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Steady advection-diffusion flow with 
recirculating wind. 

Hot plate at wall results in sharp internal 
boundary layer.

Preconditioner Results - Recirculating Wind 

Comparison of iteration residuals.

•30 interface steps yeild 10% accuracy
•(P+1)[120N+(P+1)] additional flops per 
step

!w = 200(y(1 − x2),−x(1 − y2))



•Precondition Interface Solve
•Analytical FDM
•Multiple wind directions per element
•2D & 3D Navier-Stokes
•Flows with boundary layers

Future Directions
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